Matrix Variate ^-generalized Normal Distribution

نویسنده

  • A. K. GUPTA
چکیده

In this paper, the matrix variate ^-generalized normal distribution is introduced. Then its properties are studied. In particular, it is proved that this distribution has maximal entropy in a certain class of distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Conditional Applications of Matrix Variate Normal Distribution

In this paper, by conditioning on the matrix variate normal distribution (MVND) the construction of the matrix t-type family is considered, thus providing a new perspective of this family. Some important statistical characteristics are given. The presented t-type family is an extension to the work of Dickey [8]. A Bayes estimator for the column covariance matrix &Sigma of MVND is derived under ...

متن کامل

Symmetrised Doubly Non Central, Nonsingular Matrix Variate Beta Distribution

In this paper, we determine the symmetrised density of a nonsingular doubly noncentral matrix variate beta type I and II distributions under different definitions.

متن کامل

ON SELBERG-TYPE SQUARE MATRICES INTEGRALS

In this paper we consider Selberg-type square matrices integrals with focus on Kummer-beta types I & II integrals. For generality of the results for real normed division algebras, the generalized matrix variate Kummer-beta types I & II are defined under the abstract algebra. Then Selberg-type integrals are calculated under orthogonal transformations.

متن کامل

Matrix-Variate Distribution of Training Models for Robust Speaker Adaptation

In this paper, we describe a new speaker adaptation method based on the matrix-variate distribution of training models. A set of mean vectors of hidden Markov models (HMMs) is assumed to be drawn from the matrix-variate normal distribution, and bases are derived under this assumption. The resulting bases have the same dimension as that of the eigenvoice, thus adaptation can be performed using t...

متن کامل

Classifying three-way data through Matrix-Normal Mixtures

Matrix-variate distributions represent a natural way for modeling random matrices. Realizations from random matrices are generated by the simultaneous observation of variables in different situations or locations, and are commonly arranged in three-way data structures. Among the matrix-variate distributions, the matrix normal density plays the same pivotal role as the multivariate normal distri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010